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Abstract 

•  Compressive sensing (CS) provides an alternative way 

to deal with the cross-terms, without the resolution loss. 

•  Ideal TFDs are inherently sparse, since they are 

composed of the components IFs. 

•  The sensing matrix, ϕ(ν,τ), is designed in a way which 

discards highly oscillatory cross-terms in the AF: 

 

 

 A’
z(ν,τ) is the CS-AF, and Az(ν,τ) is the AF. 

•  In the standard CS notation, the Fourier transformation 

is denoted as multiplication with matrix ψ: 

 

 ϑz(t, f ) is the reconstructed TFD. 

•  This leads to under-determined system: goal of the 

reconstruction algorithm is to find an optimal solution to: 

•  The problem is a well known unconstrained optimization 

problem and can be solved by minimizing the ℓ1 norm : 

•  The ℓ1 norm minimization has a unique closed form: 

 

      λ is the regularization parameter. 
 

T3.7-P7 

Nonstationary signals are optimally represented in the joint 

time-frequency domain using time-frequency distributions 

(TFDs). The unwanted artefacts, which are by-products of 

TFDs quadratic nature, make TFD interpretation a 

challenging task.  

Recently proposed methods address the problem of artefact 

removal by employing compressive sensing (CS) techniques, 

with unavoidable resolution loss being reduced by using 

reconstruction algorithms based on sparsity constraints.  

In this work, we study the effects of the CS area selection on 

the resulting sparse TFD performance. We also propose a 

method for an automatic data-driven CS area selection.  

The method performance is tested on synthetic and real-life 

signals, including examples of geophysical signals models. 

Quadratic Time-Frequency Distributions 

•  Time-frequency distributions (TFDs): observe signal 

energy distribution as a function of both time and 

frequency simultaneously. 

•  Consider a multi-component linear frequency modulated 

(LFM) signal z(t), with Nc components: 
 

TFD as a Sparsity Inducing Domain 

References 

Conclusion 

CS-AF Area Selection  

•  Selection of the CS-AF area is crucial for the TFD 

localization and cross-terms suppression. 

•  The CS–AF area is usually chosen experimentally as a 

rectangle containing N’
τ x N’

υ ≈ Nt samples, centered at 

the AF domain origin. 

Examples 
 

Example 1: Whale signal 

•  The presented method adaptively detects the CS-AF area 

which guaranties the optimal amount of input data for sparse 

reconstruction algorithms. 

•  The method results in highly concentrated TFDs, with fast 

sparse reconstruction algorithm convergence. 

•  The effectiveness of the proposed method has been illustrated 

on synthetic and real-life signals examples. 
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 Ai(t), φi(t) are the amplitude and phase of the i-th 

component. 

•  Ideal signal time-frequency distribution is a set of Dirac 

functions: 
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 fi0(t) = (1/2π)dφi(t)/dt is the instantaneous frequency 

(IF) of the i-th component. 

•  In real-life applications, signal analytical form is not 

obtainable; numerical methods for TFD calculation. 

•  Wigner-Ville distribution (WVD): perfect localization for a 

mono-component LFM signal: 
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 Rz(t,τ) = z(t+τ/2)z*(t-τ/2) is the signal local 

autocorrelation function (LAF). 

•  WVD drawback: when the signal has Nc >1, cross-terms 

appear between each pair of components. 

•  Cross-terms are highly oscillatory and can be filtered out 

in the ambiguity function (AF), which is the Fourier 

transformation of the TFD. 

•  Auto-terms also get partially filtered out, hence reducing 

the concentration of the auto-terms in the time-frequency 

plane. 
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•  Since there is no single best performing kernel for all 

signals, the need to adaptively construct kernel has 

arisen. 

•  Radially Gaussian Kernel (RGK) solves the following 

optimization problem: 
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•  The goal is not to exactly reconstruct the starting TFD; 

the goal is to obtain a new WVD-like TFD, with highly 

suppressed cross-terms. 

•  The general goal of the proposed adaptive CS-AF area 

selection method is to capture as large as possible area 

around the AF origin, without including any cross-terms. 

•  This is achieved by searching the zero-doppler and the 

zero-lag AF slices for points where the cross-terms 

intersect with the respective AF axis.  
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•  TFD performance is measured using the concentration 

measure, which has lower values for better concentrated 

TFDs: 
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NESTA 
(ε=10%) 

NESTA 
(ε=1%) 

NESTA 
(ε=0.1%) 

RGK 
(α=3) 

Mz
S 

 

FIX 0.5406 0.5406 0.5406 
1.2248 

AUTO 0.4877 0.4877 0.4877 

t [s] 

 

FIX 45.7979 46.7524 46.0662 
6.6070 

AUTO 45.9895 45.8414 45.8758 

 

Example 3: Earthquake signal model 

NESTA 
(ε=10%) 

NESTA 
(ε=1%) 

NESTA 
(ε=0.1%) 

RGK 
(α=3) 

Mz
S 

 

FIX 0.4011 0.3950 0.3895 
2.8401 

AUTO 0.3720 0.3644 0.3524 

t [s] 

 

FIX 2.4230 6.8978 18.3168 
0.7685 

AUTO 2.6934 8.1296 22.8794 

 

Example 2: Explosion signal model 

GPSR 
(ε=10%) 

GPSR 
(ε=1%) 

GPSR 
(ε=0.1%) 

RGK 
(α=3) 

Mz
S 

 

FIX 0.0050 0.0050 0.0033 
1.8974 

AUTO 0.0220 0.0220 0.0148 

t [s] 

 

FIX 0.2142 0.1812 0.3490 
0.1880 

AUTO 0.1809 0.1803 0.3516 
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