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ABSTRACT

During the GSETT-3 experiment, and in the early days of the CTBT,
discussions were held regarding the appropriate specifications for the
International Monitoring System (IMS) primary and auxiliary seismic stations.
Communications cost and digital storage availability were two reasons for
specifying the relatively low rate of 40 samples per second (sps) for the
collection and the storage of the seismic data. In fact, several of the legacy
array stations were allowed to remain at 20 sps. Since that time, the sample
rates have increased at a number of open stations to 100 sps, and even 200 sps.

Cepstral analysis applied to higher and lower sample rate data indicate that
better event depth information is obtained from higher sampled data.

Here we present results from processing modeled data, shock wave data from
an Israeli explosion designed to test the CTBTO-IMS system (1000 sps vs 100
sps) and a Nevada Test Site nuclear explosion, JUNCTION, recorded at PFO
(250 sps vs 20 sps). In each case, we compute the event spectrum, the power
cepstrum and the complex cepstrum for the two sample rates, and compare the
differences in the results obtained from the processing of the two related
complex cepstrums.
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DATA

• Shock wave data from an explosion designed to test the CTBTO-IMS 
system (1000 sps vs 100 sps). The tests were conducted at the surface, in 
February 2011 and recorded at an array of six infrasound sensors 
located at 29.9N, 34E. Here we present an analysis of records at station 
NS2A. 

• A Nevada Test Site underground (622m depth) nuclear explosion, 
JUNCTION, occurred on March 26 1992, 16:30:00 UT, in the NTS area 
U19bg, at 37.27N and 116.36W, of 100kt yield. This explosion was 
recorded at the station AZ.PFO, at 402.2 km distance (250sps and 20 
sps).
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OBJECTIVE

To improve shallow depth estimates of events of interest using Cepstral
methods, should we be using data samples at rates higher than 40 sps? If the
answer is “yes”, the next questions are

1) What sample rate is appropriate?

2) Under what circumstances?

3) What should we require from further investigations?
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MOTIVATION

Utilizing Complex Cepstrum necessitates the use of phase
information, which requires phase unwrapping and linear phase
component removal. As observed in the literature, these are not
trivial problems, except perhaps for the minimum-phase case, which
is an ideal case and not typical for actual seismic signals. However, we
have observed on some explosion data, that the phase unwrap
problem is reduced, or eliminated, when we process events at very
high sample rates.
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METHOD

Cepstral analysis of seismic events attempts to provide answers the 
following questions: 

• What is the depth of the event? 

• Is the event a single, or multiple explosion (ripple fire)?

• What is the best estimate of the event yield?

• Is the event located underground or at the surface, natural or 
man-made? 

• How reliable are the above estimates?
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METHOD
We believe that the deconvolution process utilizing the Complex Cepstrum iteratively is one of the 
optimum methods for identifying the associated depth seismic phases. 

The Cepstral Algorithms used here use a set of concepts also addressed in several poster 
presentations at this conference (Kemerait and Tibuleac, Tibuleac et al., Saikia et al.) and explained 
in detail by Childers et al. (1977): 

• Homomorphic deconvolution (the use of the Complex Cepstrum and its phase information for 
echo detection and wavelet recovery);

• Blind deconvolution (deconvolution without explicit knowledge of the impulse response function 
used in the convolution);

• Complex Cepstrum (the Inverse Fourier Transform of the logarithm (with unwrapped phase) of 
the Fourier Transform of the signal);

• Liftering of the Complex Cepstrum (“filtering” the echo peaks out of the Complex Cepstrum); 

• Power Cepstrum (the Inverse Fourier Transform of the complex logarithm of the Fourier 
Transform of the signal);

• Minimum – phase signal: A  signal whose Z-transform has no poles or zeros outside the unit-circle, 
or no Complex Cepstrum at negative frequencies; 

• Maximum –phase signal: A  signal whose Z-transform has no poles or zeros inside the unit-circle, 
or no Complex Cepstrum at positive frequencies; 

• Mixed-phase sequence:  A real signal with minimum and maximum phase sequences, with positive 
and negative values of Complex Cepstrum.
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Cepstral Analysis Steps, Block diagram
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� Select input function X(n) (iteratively adjust window lengths for 

the input signal);

� Estimate Complex Cepstrum CX(n) and reiterate through 

possible peaks for the deconvolution process (iterating on the 

input into the linear filter box) ;

� Prune cepstrum (linear filter box) and obtain CS(n)

� Inverse transform and estimate the wavelet and echo

series of metrics to evaluate the results, as described by 

Tibuleac et al. at this meeting.

Complex cepstrum

Estimate of echo = 

Initial Signal-Wavelet 

CS(n)
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Comparison of Resulting Cepstrums
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Close-in infrasound data 10-ton surface explosion test of the CTBTO-IMS, 
2011 100 sps
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1000 sps 100 sps
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1000 sps 100 sps

Note deconvolved waveform 

similarity at all sample rates, 

however, enhanced detail at 

higher sample rate;
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P : First arrival hypothesis based on 

Complex Cepstrum Lifter;

IS : Original signal;

pP : (IS - P) First echo hypothesis.

Time (samples at 1000sps) Time (samples at 100sps)

Correlation IS*P: 

0.89

Correlation pP*P : 

0.9

Correlation pP*IS: 

0.8

power(pP)/

power(xcor_P)= 

0.46

Correlation IS*P:  

0.79

Correlation pP*P: 

0.98

Correlation pP*IS:   

0.84

power(pP)/

power(xcor_P)= 

0.61

Deconvolved waveform 

similarity evaluation metrics 

are slightly better at higher 

sample rate.

The input and  estimated echo lag corresponds 

within two sample points for both sample rates. 
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250 sps 20 sps
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250 sps 20 sps
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250 sps 20sps

Time (samples at 250sps) Time (samples at 20sps)

Time (samples at 20sps)

Time (samples at 250sps)

Note improved, more stable  

P, pP waveform 

deconvolution at higher 

sample rate

Note improved IS-P and IS-

pP correlation at higher 

sample rate.

First liftered peak time-range: 

0.243-0.258s

Correlation IS*P: 0.97

Correlation pP*P : -0.94

Correlation pP*IS: -0.96

power(pP_hypo)/

power(xcor_P_hypo)= 0.24

Estimated Depth @ 3.5km/s:

0.65 - 0.69 km

True Depth: 0.622 km

First liftered peak time-range: 

0.3-0.33s

Correlation IS*P: 0.65

Correlation pP*P :-0.69

Correlation pP*IS      -0.79

power(pP_hypo)/

power(xcor_P_hypo)= 0.77

Estimated Depth @3.5km/s:  

0.78-0.96 km

True depth: 0.622 km

The input and  estimated 

echo lag corresponds 

within three sample 

points for both sample 

rates. 
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SUMMARY

�A higher sample rate better samples the spectra, and results in 
enhanced cepstral detail;

�The phase unwrapping errors decrease with the increase of sample rate; 

�A challenge to address in the future will be ambient noise phase 
distortion at higher sample rates and low Signal-to-Noise ratios. 
Preliminary investigations show that filtering is a possible solution to 
this problem. 

�We recommend further investigation of a comprehensive event database 
in multiple scenarios to unequivocally determine the gains and 
limitations of enhanced sample rate usage.
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