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key aspects of our FD modelling

» realistic rheological model
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realistic rheological model

GMB EK/GZB with material-independent memory variables
and coarse graining
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~ GMB EK/GZB with material-independent memory variables
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« (optionally) low grid dispersion
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~ TE-DRP (2,4) VS SG FDS in high-contrast media
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sufficiently accurate representation of the boundary conditions

at a material interface
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sufficiently accurate representation of the boundary conditions

at a material interface
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available at http://efispec.free.fr
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https://webmail.fmph.uniba.sk/owa/redir.aspx?URL=http://efispec.free.fr

sufficiently accurate representation of the boundary conditions

at a material interface
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sufficiently accurate representation of the boundary conditions

at a material interface

SPEM minimum node-to-node distance: 0.1 m
FDM grid spacing: 5.0 m
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key aspects of our FD modelling

» realistic rheological model
~ GMB EK/GZB with material-independent memory variables
and coarse graining

« (optionally) low grid dispersion
~TE (2,4) VS SG FDS in weakly heterogeneous media
~ TE-DRP (2,4) VS SG FDS in high-contrast media

« sufficiently accurate representation of the free-surface
condition
~ AFDA

« sufficiently accurate representation of the boundary conditions
at a material interface
~ volume orthorhombic averaging

- efficient grid
~ arbitrary spatial discontinuous grid — stable algorithm
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efficient grid

arbitrary spatial discontinuous grid

Sediments

Bedrock /]

Basement
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Sediments
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odd number

arbitrary-discontinuous
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» realistic rheological model
~ GMB EK/GZB with material-independent memory variables
and coarse graining

« (optionally) low grid dispersion
~TE (2,4) VS SG FDS in weakly heterogeneous media
~ TE-DRP (2,4) VS SG FDS in high-contrast media

« sufficiently accurate representation of the free-surface
condition
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« sufficiently accurate representation of the boundary conditions
at a material interface
~ volume orthorhombic averaging

- efficient grid
~ arbitrary spatial discontinuous grid

« accurate and efficient non-reflecting grid boundaries
~ PML

* MPI parallelization

CTBTO SnT2017



key aspects of our FD modelling

» realistic rheological model
~ GMB EK/GZB with material-independent memory variables
and coarse graining

The Finite-Difference
Modelling of
Earthquake Motions

Waves and Ruptures

« (optionally) low grid dispersion
~TE (2,4) VS SG FDS in weakly heterogeneous media
~ TE-DRP (2,4) VS SG FDS in high-contrast media

« sufficiently accurate representation of the free-surface
condition
~ AFDA

« sufficiently accurate representation of the boundary conditions
at a material interface
~ volume orthorhombic averaging

- efficient grid
~ arbitrary spatial discontinuous grid

« accurate and efficient non-reflecting grid boundaries Bater Motro

~ PML Jozef Kristek

. MPI parallelization computer code available at Martin Galis

www.nuguake.eu/FDSim
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properties of geological environment
after contained underground nuclear explosion

Stage I:
milliseconds
after detonation,
the cavity begins
to form
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properties of geological environment
after contained underground nuclear explosion

i R

Stage I: Stage II:
milliseconds a pressurized cavity
after detonation, is formed by the
the cavity begins detonation,

to form fracturing

of surrounding
material occurs
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properties of geological environment
after contained underground nuclear explosion

Stage I: Stage II: Stage III:
milliseconds a pressurized cavity decreasing

after detonation, is formed by the | pressure allows
the cavity begins detonation, ‘ ' rubble to fill voids

to form fracturing which can migrate
of surrounding k* "*" to the surface
material occurs
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set of structural models
for the vertical emplacement

cavity without chimney (for plastic rock) cavity with chimney filled with rubble + apical void

free surface free surface
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set of structural models
for the vertical emplacement

4 essential types of preshot media 2 different yields of explosion
o tuff low-yield (1 kt)
e alluvium high-yield (10 kt)
* rock salt
» (granite
with viscoelastic attenuation 2 different depth of burial
inimal
Vs minima
0s(f) = 10 2 X minimal
QK(f) =

in total: 16 basic structural models
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| 16.9 + 25.4 + 67.5 £ 3.0 138 =+ + 1.4
ow
fuff 360 15.6 £ 1.8 23.4 £ 2.7 56.4 £ 6.5 127 £ 18 8.9 + 1.3
u
high 280 33.4 £ 2.6 50.2 = 3.9 125.9 +£ 9.8 256 =+ 16 18.0 £ 1.1
19
560 30.9 = 5.2 46.4 £ 7.8 102 =+ 17 237 =+ 15 16.6 £ 1.0
| 180 14.6 £ 2.2 22.0 £+ 3.3 118 =+ 18 120 + 17 84 + 1.2
ow
_ 360 13.4 £ 1.5 20.1 = 2.3 88.1 £ 9.9 109 <+ 15 7.6 + 1.1
alluvium
high 260 29.0 £ 2.6 43.5 £ 3.8 212 £ 19 222 + 14 15.6 £ 1.0
19
520 26.5 £ 1.4 39.8 + 2.1 153.6 + 8.1 204 + 12 14.2 £ 0.9
| 180 11.5 £ 2.4 22.9 + 4.8 196 =+ 41 75 + 12 5.2 + 0.8
ow
_ 360 10.5 £ 2.1 21.0 + 4.2 142 + 28 62 + 18 4.4 + 1.3
granite
high 260 22.7 £ 3.2 45.3 £ 6.5 344 £ 49 173 =+ 25 12.1 £ 1.8
Ig
520 20.8 = 3.0 41.6 £ 6.0 242 £ 35 143.2 £ 8.0 10.0 £ 0.6
| 180 14.8 £ 0.9 22.2 + 1.4 188 =+ 12 - -
ow
360 13.7 £ 1.7 20.5 £ 2.5 130 =+ 16 - -
rock salt
high 260 29.5 £ 2.0 44.3 £+ 3.0 323 £ 22 - -
19
CTBTO SnT2017 520 27.3 :I: 4.3 40.9 :I: 6.4 219 :I: 34 = =



workflow

—_

wavefield
analyses
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illustrative numerical example
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first results for the plane S-wave incidence

Rock salt, low-yield, minimal depth of burial, delta-like signhal up to 20 Hz

cross-section aerial view
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first results for the plane S-wave incidence
Rock salt, low-yield, minimal depth of burial (20-times slower)

cross-section aerial view
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first results for the plane S-wave incidence
Tuff, low-yield, minimal depth of burial, delta-like signal up to 20 Hz

cross-section aerial view
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first results for the plane S-wave incidence
Tuff, low-yield, minimal depth of burial (20-times slower)

cross-section aerial view
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first results for the plane S-wave incidence

aerial view, low-yield, minimal depth of burial

Rock salt — pure cavity Tuff — cavity + chimney
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first results for the plane S-wave incidence

aerial view, low-yield, minimal depth of burial
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first results for the plane S-wave incidence
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first results for the plane S-wave incidence

aerial view, low-yield, minimal depth of burial
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thank you for the attention
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