CTBT: Science and Technology Conference Vienna June 26-30, 2017

Accurate and Efficient Viscoelastic Finite-difference Modelling for Analysis of Seismic Wavefields Applied to On-Site Inspection

Peter	Moczo	– CUB, ESI SAS
Jozef	Kristek	– CUB, ESI SAS
Miriam	Kristekova	– ESI SAS, CUB

Outline

key aspects of our FD modelling

set of structural models for the vertical emplacement

first simulations

• realistic rheological model

realistic rheological model

GMB EK/GZB with material-independent memory variables and coarse graining

4 relaxation frequencies

l = 1,...,4 indicate
l-th relaxation frequency

• realistic rheological model

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media

• realistic rheological model

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition
 - $\sim \text{AFDA}$

• realistic rheological model

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition
 - $\sim \text{AFDA}$
- sufficiently accurate representation of the boundary conditions at a material interface
 - \sim volume orthorhombic averaging

at a material interface

at a material interface

Florent De Martin EFISPEC3D available at <u>http://efispec.free.fr</u>

at a material interface

at a material interface

SPEM minimum node-to-node distance:0.1 mFDM grid spacing:5.0 m

• realistic rheological model

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition
 - \sim AFDA
- sufficiently accurate representation of the boundary conditions at a material interface
 - \sim volume orthorhombic averaging
- efficient grid
 - \sim arbitrary spatial discontinuous grid stable algorithm

efficient grid

arbitrary spatial discontinuous grid

• realistic rheological model

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition
 - \sim AFDA
- sufficiently accurate representation of the boundary conditions at a material interface
 - \sim volume orthorhombic averaging
- efficient grid
 - \sim arbitrary spatial discontinuous grid
- accurate and efficient non-reflecting grid boundaries $\sim \rm PML$

• realistic rheological model

 \sim GMB EK/GZB with material-independent memory variables and coarse graining

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition
 - $\sim \text{AFDA}$
- sufficiently accurate representation of the boundary conditions at a material interface
 - \sim volume orthorhombic averaging
- efficient grid
 - \sim arbitrary spatial discontinuous grid
- accurate and efficient non-reflecting grid boundaries $\sim \rm PML$
- MPI parallelization

• realistic rheological model

 \sim GMB EK/GZB with material-independent memory variables and coarse graining

- (optionally) low grid dispersion
 - ~ TE (2,4) VS SG FDS in weakly heterogeneous media
 - \sim TE-DRP $\,$ (2,4) VS SG FDS in high-contrast media
- sufficiently accurate representation of the free-surface condition

 $\sim \text{AFDA}$

- sufficiently accurate representation of the boundary conditions at a material interface
 - \sim volume orthorhombic averaging
- efficient grid
 - \sim arbitrary spatial discontinuous grid
- accurate and efficient non-reflecting grid boundaries $\sim \text{PML}$
- MPI parallelization

computer code available at www.nuquake.eu/FDSim www.cambridge.org/Moczo The Finite-Difference Modelling of Earthquake Motions

Waves and Ruptures

Peter Moczo Jozef Kristek Martin Gális

CAMBRIDGE

properties of geological environment after contained underground nuclear explosion

Stage I:

milliseconds after detonation, the cavity begins to form

properties of geological environment after contained underground nuclear explosion

properties of geological environment after contained underground nuclear explosion

set of structural models for the vertical emplacement

cavity with chimney filled with rubble + apical void

free surface

set of structural models for the vertical emplacement

4 essential types of preshot media

- tuff
- alluvium
- rock salt
- granite

with viscoelastic attenuation

$$Q_S(f) = \frac{V_S}{10}$$
$$Q_\kappa(f) = \infty$$

2 different yields of explosion

low-yield (1 kt) high-yield (10 kt)

2 different depth of burial

minimal

2 x minimal

in total: 16 basic structural models

material	yield	depth of burial	r _c	R _c	R _f	H _c	H _a
l tuff h	low	180	16.9 ± 0.8	25.4 ± 1.1	67.5 ± 3.0	138 ± 20	9.7 ± 1.4
		360	15.6 ± 1.8	23.4 ± 2.7	56.4 ± 6.5	127 ± 18	8.9 ± 1.3
	high	280	33.4 ± 2.6	50.2 ± 3.9	125.9 ± 9.8	256 ± 16	18.0 ± 1.1
	nign	560	30.9 ± 5.2	46.4 ± 7.8	102 ± 17	237 ± 15	16.6 ± 1.0
low alluvium high	180	14.6 ± 2.2	22.0 ± 3.3	118 ± 18	120 ± 17	8.4 ± 1.2	
	10 W	360	13.4 ± 1.5	20.1 ± 2.3	88.1 ± 9.9	109 ± 15	7.6 ± 1.1
	hiah	260	29.0 ± 2.6	43.5 ± 3.8	212 ± 19	222 ± 14	15.6 ± 1.0
	mgn	520	26.5 ± 1.4	39.8 ± 2.1	153.6 ± 8.1	204 ± 12	14.2 ± 0.9
lo granite hi	low	180	11.5 ± 2.4	22.9 ± 4.8	196 ± 41	75 ± 12	5.2 ± 0.8
	IOW	360	10.5 ± 2.1	21.0 ± 4.2	142 ± 28	62 ± 18	4.4 ± 1.3
	high	260	22.7 ± 3.2	45.3 ± 6.5	344 ± 49	173 ± 25	12.1 ± 1.8
	nign	520	20.8 ± 3.0	41.6 ± 6.0	242 ± 35	143.2 ± 8.0	10.0 ± 0.6
lo rock salt	low	180	14.8 ± 0.9	22.2 ± 1.4	188 ± 12	-	-
	IOW	360	13.7 ± 1.7	20.5 ± 2.5	130 ± 16	-	-
	high	260	29.5 ± 2.0	44.3 ± 3.0	323 ± 22	-	-
CTBTO SnT2017		520	27.3 ± 4.3	40.9 ± 6.4	219 ± 34	-	-

workflow

illustrative numerical example

	Density	Veloci	ty	Quality factor		
Zone	Density	compressional	shear	shear	bulk	
	[kg/m ³]	[m/s]	[m/s]	[m/s]	[m/s]	
cavity + chimney	1542	1130	432	43	∞	
apical void	1	350	0	-	∞	
crushed zone	1850	452	108	10	∞	
zone of inelastic deformations	1850	gradient	gradient	gradient	00	
undeformed zone	1850	2260	1080	108	∞	

	Densitv	Veloci	ty	Quality factor		
Zone		compressional	shear	shear	bulk	
	[kg/m ³]	[m/s]	[m/s]	[m/s]	[m/s]	
cavity	1	350	0	-	∞	
apical void	-	-	-	-	-	
crushed zone	2200	816	215	22	∞	
zone of inelastic deformations	2200	gradient	gradient	gradient	00	
undeformed zone	2200	4080	2150	215	∞	

Distance in cavity radii

Rock salt, low-yield, minimal depth of burial, delta-like signal up to 20 Hz

Rock salt, low-yield, minimal depth of burial (20-times slower)

cross-section aerial view 0 ं ********

Tuff, low-yield, minimal depth of burial, delta-like signal up to 20 Hz

Tuff, low-yield, minimal depth of burial (20-times slower)

cross-section aerial view **********

aerial view, low-yield, minimal depth of burial

Rock salt – pure cavity

Tuff – cavity + chimney

aerial view, low-yield, minimal depth of burial

Rock salt – pure cavity


```
Tuff – cavity + chimney
```


aerial view, low-yield, minimal depth of burial

Rock salt – pure cavity

Tuff – cavity + chimney

aerial view, low-yield, minimal depth of burial

Rock salt – pure cavity

Tuff – cavity + chimney

thank you for the attention