Identifying civil Xe-emissions: from source

A. Bollhöfer¹, P. De Meutter^{2,3,4}, F. Gubernator⁵, Benoît Deconninck⁶, C. Schlosser¹, U. Stöhlker¹, G. Kirchner⁵, C. Strobl¹, A. Delcloo³, J. Camps²

¹ Federal Office for Radiation Protection (BfS), 79098 Freiburg, Germany

² SCK-CEN, 2400 Mol, Belgium

³ Royal Meteorological Institute of Belgium, Brussels, Belgium

⁴ Ghent University, B-9000 Ghent, Belgium

⁵ University Hamburg, Carl Friedrich von Weizsäcker-Centre for Science and Peace Research (ZNF)

⁶ Institute for Radioelements, Fleurus, Belgium

- Environmental Monitoring

- Atmospheric Transport Modelling

- Stack monitoring

| Verantwortung für Mensch und Umwelt | 💼

The International Monitoring System

Bundesamt für Strahlenschutz

| Verantwortung für Mensch und Umwelt | 🔳 🔳 📕

Sources of radioxenons

Radioxenons are fission products:

- **Nuclear explosions** \succ
- Nuclear power plants and \geq research reactors
- Medical isotope production \geq (⁹⁹Mo/⁹⁹Tc; ¹³¹I)

Nuclide	T _{1/2}
^{131m} Xe	11.84 d
^{⊥зз} Хе	5.25 d
^{133m} Xe	2.19 d
¹³⁵ Xe	9.10 h

Bundesamt für Strahlenschutz

Underground test (#4), DPRK, Jan 2016

Successful nuclear weapons test announced, 6 Jan 2016

"Waiting" for the smoking gun

From Feb 17 elevated Xe-133 activity (2-3 days) at station Takasaki, JP38, but no other isotopes > MDC

| Verantwortung für Mensch und Umwelt | 🔳 🔳

Underground test (#4), DPRK, Jan 2016

IAEA - Project CRP F23031

Sharing and Developing Protocols to Further Minimize Radioactive Gaseous Releases to the Environment in the Manufacture of Medical Radioisotopes, as Good Manufacturing Practice

- Belgium (ATM, Xe-mitigation)
- Canada (CNL emissions, monitoring data and ATM)
- Egypt (Xe-mitigation)
- Germany (stack monitoring, environmental data; ATM)
- Indonesia (Xe-mitigation)
- Korea (Xe-mitigation)
- Pakistan (emissions monitoring)
- Poland (Xe-mitigation)
- USA (Xe mitigation, stack monitoring, isotopic background)

Stack and near field monitoring

1) Masters' University Hamburg, BfS

Development and test of a compact spectrometric stack monitoring system

- Characterise emissions
 - -> compare with IRE System
- 2) Investigate sensitivity of compact spectrometric systems (LaBr₃, CdZT) in the vicinity of IRE, Fleurus
 - Xe-environmental monitoring
 - Comparison with Belgian Telerad. Measurement campaign Q3 2017

Cadmium Zinc Telluride detector

- Intergated electronics
- Compact
- Low energy usage
- FWHM ~2%, 662keV

Results: Stack monitoring IRE, Fleurus

Example spectrum IRE first campaign (day 1 + day 2)

24hhsppetotuum

| Verantwortung für Mensch und Umwelt | ■ ■ ■ ■ ■ CTBTO SnT2017

Conclusions: Stack and near field monitoring

- Set-up of a CZT detector and a Raspberry Pi
 - Simple
 - Mobile
 - Small
 - Cheap
- Capable of detecting Xe-133, Xe-135, Xe-135m
- Detection Xe-131m, Xe-133m needs further development
- Preliminary data (800m N-E of IRE) indicate Xe-133 and Xe-135 easily detectable in the near field (LaBr₃)

Comparison: Environmental data - ATM

| Verantwortung für Mensch und Umwelt |

Xenon measurements in the environment

Verantwortung für Mensch und Umwelt 📔 💼

Manual system: ⁸⁵Kr & ¹³³Xe

- Cryogenic sampling (1 week, 10 m³ air)
- GC for processing and purification
- 7 proportional gas counters + anticoincidence
- MDA for ¹³³Xe: 0,01 Bg (2 m³ air)

SAUNA Lab System: Xenons only

- Nuclide specific:^{131m}Xe,¹³³Xe,^{133m}Xe,¹³⁵Xe
- β -y coincidence detection system
- MDAs (12 h meas.): 3 mBq

Atmospheric Transport Modelling

SCK-CEN, Ghent University, RMI Belgium: ATM as part of the collaboration

Stack monitoring data from IRE, Fleurus for 2014:

- 15 min Xe-133 emission data as model input

Meteorological data: ECMWF

- 3 hourly weather for 2014

Model: FLEXPART("FLEXible PARTicle dispersion model")

- Lagrange transport and dispersion model

- 0.5^o horizontal resolution

Emissions NPP:

- Germany (quarterly), Switzerland (monthly), France, Belgium and Scandinavian countries (annually)

> J Radioanal Nucl Chem (2009) 282:767-772 DOI 10.1007/s10967-009-0235-z

Emissions CNL:

- Hoffman et al 2009

Changes in radioxenon observations in Canada and Europe during medical isotope production facility shut down in 2008

Bundesamt für Strahlenschutz

Ian Hoffman · Kurt Ungar · Marc Bean · Jing Yi · René Servranckx Calin Zaganescu · Nils Ek · Xavier Blanchard · Gilbert Le Petit · Guy Brachet · Pascal Achim · Thomas Taffary

2014 (weekly samples)

2014 (weekly samples)

Discussion & Future work

- ATM reproduces general trends at the stations but:
 - Periods with higher measured vs modelled data and vice versa

(1) miss-representation of NPP's in a multi-source region due to temporal variability of emission (e.g. during revisions)

- (2) local sources
- (3) emission data IRE
- (4) uncertainties in dispersion modelling
- (?) . . .
- Averaging reduces accuracy of measured and modelled data
 - Weekly data depend on timing of arrival of cloud, Factor 2-3 difference. Daily sampling required
 - Maximum travel time only 14 days. CNL under-represented?
- Time resolved emission data needed as input into ATM
 - Further development and refinement of easy to use CSMS
 - Phase out PC -> isotope specific Xe measurements using SAUNA only
 - Continue collaboration: stack near-field far-field monitoring, Q3 2017

Questions?

| Verantwortung für Mensch und Umwelt | 🔳 🔳 🔳 🔳 🔳

Campaign planned for September 2017

- MIPF Fleurus: ~ 10-16 September 2017
- 15' emissions data
- Measurements in near field (GDR + spectrometric)
- Daily noble gas samples: Freiburg, Schauinsland, Trier
- ATM (including near-field)
- Time-resolved data from German NPPs

2014 (daily samples) RN33 – weekly samples Freiberg

